Leetcode 1229 Solution

This article provides solution to leetcode question 1229 (shortest-path-with-alternating-colors)

https://leetcode.com/problems/shortest-path-with-alternating-colors

Solution

class Solution: def shortestAlternatingPaths(self, n: int, red_edges: List[List[int]], blue_edges: List[List[int]]) -> List[int]: graph = collections.defaultdict(list)
for src, dst in red_edges: graph[(src, 'r')].append((dst, 'b'))
for src, dst in blue_edges: graph[(src, 'b')].append((dst, 'r'))
q = collections.deque() visited = set() red_min_steps = [sys.maxsize] * n blue_min_steps = [sys.maxsize] * n step = 0
q.append((0, 'r')) visited.add((0, 'r')) red_min_steps[0] = 0
q.append((0, 'b')) visited.add((0, 'b')) blue_min_steps[0] = 0
while q: s = len(q)
for _ in range(s): node_id, node_color = q.popleft()
for neigh_node_id, neigh_node_color in graph[(node_id, node_color)]: if (neigh_node_id, neigh_node_color) in visited: continue
if neigh_node_color == 'r': red_min_steps[neigh_node_id] = min(red_min_steps[neigh_node_id], step + 1) else: blue_min_steps[neigh_node_id] = min(blue_min_steps[neigh_node_id], step + 1)
q.append((neigh_node_id, neigh_node_color)) visited.add((neigh_node_id, neigh_node_color))
step += 1
ans = [] for red_opt, blue_opt in zip(red_min_steps, blue_min_steps): opt = min(red_opt, blue_opt) if opt == sys.maxsize: ans.append(-1) else: ans.append(opt)
return ans